聚龙一号装置实景图
脉冲功率技术是以电能为基础,通过对能量在时间和空间上进行压缩,并在特定负载上快速释放,获得极高的功率输出的一门实验科学,是在实验室条件下产生极端高温、高压、高密度、强辐射条件的有效手段。我国脉冲功率技术研究的先驱、老一辈科学家王淦昌院士曾经指出:“高功率脉冲技术是当代高科技的主要基础学科之一。”采用超高功率脉冲装置驱动柱形金属丝阵负载,使其气化并向轴心箍缩(即Z箍缩),能产生极强的X射线辐射,可以用来研究核武器中的辐射输运和聚变点火等问题,同时在惯性约束聚变、辐射效应、天体物理等前沿科学研究领域也具有非常重要的价值。
近几十年来,由于军事应用需求的强烈牵引,高功率脉冲技术成为主要的有核国家研究的焦点,美国投入了大量人力物力,先后建立了一系列超大脉冲功率装置,典型的Z箍缩研究装置有土星装置和ZR装置,俄罗斯也先后建成S-300和Angara-5-1装置。与之相比,我国起步较晚,基础薄弱。
为适应新时期核武器研究的需要,必须拥有具备足够驱动能力的综合实验平台,以此为基础加强精密物理实验设计、高精度多物理量诊断测试、数值模拟及理论分析等方面的能力。经过精心论证,上世纪末,中物院启动了大型多路超高功率脉冲装置的相关研究工作,并对已有平台进行技术改造,开始了原理探索及关键技术研究。在此基础上,本世纪初,中物院向国家提出了适合我国国情的研究发展计划建议,其中最关键的第一步,就是研制Z箍缩初级试验平台——聚龙一号并开展相应的物理实验研究。
2004年,国家批复中物院正式启动相关工作,装置的技术指标确定为输出电流八百万至一千万安培,电流脉冲上升时间小于千万分之一秒,功率超过20万亿瓦。这样的装置系统极为复杂,技术难度和风险非常高,国内的技术基础十分薄弱,材料、设计、加工等各方面都面临极大的挑战。
国防科学技术研究的历史使命,使得中物院人毅然接受挑战,迎难而上、昂首前行。自2001年起,任务承担单位流体物理研究所开展了周密的立项论证工作,丁伯南、彭先觉等院领导对此给予了高度关注,多次亲临一线,了解项目的进展和亟待解决的问题。院内外老专家组成了顶尖专家团队,就装置技术路线和关键部件研制进行激烈讨论,提出了很多有益的思路和建议。流体物理研究所集中科研精英成立论证报告编写组和预研攻关小组,从国外有限公开的资料中收集、提炼相关信息,结合中物院的具体要求,对技术路线和关键技术进行充分的调研和分析论证,多次召开大范围深层次专题研讨会,技术资料、设想方案、加工图纸堆满了研究人员的文件柜。预研小组成员随后开展了场畸变开关、激光触发多级开关、马克斯发生器模块研制等大量预研工作,开展了上百次的论证研究,探索突破关键技术的途径。通过细致地进行物理分析、精确地验证计算参数、周密地考虑模型设计,取得了激光同步触发系统、场畸变气体开关、磁绝缘传输线,以及测试诊断系统研制的重大突破,为装置立项打下坚实的基础。
在聚龙一号装置的总体设计方案中,同步触发方案是其“灵魂”之所在。这是由于电流巨大,聚龙一号装置需由24路超高功率脉冲功率装置并联而成,每一路能量的释放由一个激光触发开关控制。为保证开关动作的一致性,激光实际出光时间与设定值的误差不能超过两亿分之一秒。如果将从电容器充电开始到最后能量释放完成的时间(约100秒)放大展宽至一千年,那么上述时间误差仅相当于1.5秒,其技术难度可想而知。为了实现这一技术指标,必须设计出完善的激光触发开关同步触发方案。
当时,美国Z装置是采用一台能量很大的激光器,分为36路激光去触发36个开关。如果直接借鉴美国的经验,技术风险会降低很多,但是该方案对激光器能量要求高、光路极其复杂、稳定性不高。
扫描本文章到手机浏览
扫描关注新时社官方微信