读者耐心读到这里,那么就对歼-10的气动设计思想有所理解了吧
鸭翼布局的缺点
近距耦合与线传飞控使鸭翼布局的气动力优点得以发挥,但仍然需要考虑其先天具有的缺点。一般来说鸭翼布局战斗机的垂尾面积与高度都超过传统布局战斗机,这是因为鸭翼涡流会干扰垂尾附近流场,影响纵向稳定,此外还因为垂尾离重心较近,力臂较短,需较大面积才能产生足够的纵向控制力矩。还有的设计为了确保大迎角时的横向稳定性,在机腹加装腹鳍。高耸的垂尾会增加结构重量、阻力和雷达反射截面积。
从正向RCS值考虑,传统布局因为水平安定面置于主翼之后,可以弱散射部件遮蔽强散射部件的原理来降低平尾的雷达反射。鸭翼布局则因为水平安定面在主翼前,进行姿态控制时鸭翼偏角的改变将增加正向RCS值。当然在平飞时,大后掠角的鸭翼与三角翼可以使雷达主波束偏折,能在一定程度上降低正向RCS值。欧洲“台风”在设计时并没有考虑隐身,但从EAP(Experimental Aircraft Program)验证机改进为“台风”时,把方形进气口改为“微笑”式弧形进气口,以降低进气道RCS值,易反射雷达波的主翼、鸭翼前缘也以碳纤维复合材料制造。
“台风”把EAP的方形进气口改为“微笑”式弧形进气口以降低正向RCS值
法国“阵风”战斗机经过外形评估后,发现最大雷达反射源来自雷达、电子战天线、座舱盖和进气道,所以把进气道埋入两侧肋部,并用鸭翼在上方遮蔽,避免被俯视雷达和预警机探测。
“阵风”利用鸭翼从上方遮蔽进气道
歼-10出于高速性能需求,采用了二元可变几何进气道,付出结构复杂与重量增加的代价来获得具有良好超音速进气压缩效率的进气道,但圆形机身截面与长方形进气道的结合不可避免地留有较大间隙与不连续面,两者间的结构加强梁也增大了RCS值,所以后续改型歼-10B大幅修改了进气道形式,采用F-35、枭龙战斗机所用的无边界层隔道超音速进气道(diverterless supersonic inlet, DSI)来降低正向RCS值,但DSI进气道的压缩效率可能不如原先,影响高速性能。
歼-10B的改进侧重点在缩小正向RCS和航电,而不是飞行性能
扫描本文章到手机浏览
扫描关注新时社官方微信